30 research outputs found

    Eulerian CFD modeling of nozzle geometry effects on ECN Sprays A and D: assessment and analysis

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419882500.[EN] Diesel spray modeling is a multi-scale problem with complex interactions between different flow regions, that is, internal nozzle flow, near-nozzle region and developed spray, including evaporation and combustion. There are several modeling approaches that have proven particularly useful for some spray regions although they have struggled at other areas, while Eulerian modeling has shown promise in dealing with all characteristics at a reasonable computational effort for engineering calculations. In this work, the sigma -Y single-fluid diffuse-interface model, based on scale separation assumptions at high Reynolds and Weber numbers, is used to simulate the engine combustion network Sprays A and D within a Reynolds-averaged Navier-Stokes turbulence modeling approach. The study is divided into two parts. First of all, the larger diameter Spray D is modeled from the nozzle flow till evaporative spray conditions, obtaining successful prediction of numerous spray metrics, paying special attention to the near-nozzle region where spray dispersion and interfacial surface area can be validated against measurements conducted at the Advanced Photon Source at Argonne National Laboratory, including both the ultra-small-angle X-ray scattering and the X-ray radiography. Afterwards, an analysis of the modeling predictions is made in comparison with previous results obtained for Spray A, considering the nozzle geometry effects in the modeling behavior.The authors thank the freely shared X-ray radiography and ultra-small-angle X-ray scattering measurements performed at Argonne National Laboratory by the following authors: Daniel J. Duke, Jan Ilavsky, Katarzyna E. Matusik., Brandon A. Sforzo., Alan L. Kastengren and Christopher F. Powell. They also thankfully acknowledge the computer resources at Picasso and the technical support provided by Universidad de Malaga (UMA; RES-FI-2018-1-0039).Pandal, A.; García-Oliver, JM.; Pastor Enguídanos, JM. (2020). Eulerian CFD modeling of nozzle geometry effects on ECN Sprays A and D: assessment and analysis. International Journal of Engine Research. 21(1):73-88. https://doi.org/10.1177/1468087419882500S7388211PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009Payri, R., Salvador, F. J., Gimeno, J., & Zapata, L. D. (2008). Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel, 87(7), 1165-1176. doi:10.1016/j.fuel.2007.05.058Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009Payri, F., Payri, R., Salvador, F. J., & Martínez-López, J. (2012). A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers & Fluids, 58, 88-101. doi:10.1016/j.compfluid.2012.01.005Kastengren, A. L., Powell, C. F., Wang, Y., Im, K.-S., & Wang, J. (2009). X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY. Atomization and Sprays, 19(11), 1031-1044. doi:10.1615/atomizspr.v19.i11.30Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412Dahms, R. N., Manin, J., Pickett, L. M., & Oefelein, J. C. (2013). Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proceedings of the Combustion Institute, 34(1), 1667-1675. doi:10.1016/j.proci.2012.06.169Arienti, M., & Sussman, M. (2017). A numerical study of the thermal transient in high-pressure diesel injection. International Journal of Multiphase Flow, 88, 205-221. doi:10.1016/j.ijmultiphaseflow.2016.09.017Vallet, A., Burluka, A. A., & Borghi, R. (2001). DEVELOPMENT OF A EULERIAN MODEL FOR THE «ATOMIZATION» OF A LIQUID JET. Atomization and Sprays, 11(6), 24. doi:10.1615/atomizspr.v11.i6.20Siebers, D. L. (2008). Recent Developments on Diesel Fuel Jets Under Quiescent Conditions. Flow and Combustion in Reciprocating Engines, 257-308. doi:10.1007/978-3-540-68901-0_5Oefelein, J., Dahms, R., & Lacaze, G. (2012). Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines. SAE International Journal of Engines, 5(3), 1410-1419. doi:10.4271/2012-01-1258Demoulin, F.-X., Reveillon, J., Duret, B., Bouali, Z., Desjonqueres, P., & Menard, T. (2013). TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING. Atomization and Sprays, 23(11), 957-980. doi:10.1615/atomizspr.2013007439Desantes, J. M., Garcia-Oliver, J. M., Pastor, J. M., & Pandal, A. (2016). A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS E-Y EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 26(7), 713-737. doi:10.1615/atomizspr.2015013285Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198Navarro-Martinez, S. (2014). Large eddy simulation of spray atomization with a probability density function method. International Journal of Multiphase Flow, 63, 11-22. doi:10.1016/j.ijmultiphaseflow.2014.02.013Pandal, A., Pastor, J. M., García-Oliver, J. M., Baldwin, E., & Schmidt, D. P. (2016). A consistent, scalable model for Eulerian spray modeling. International Journal of Multiphase Flow, 83, 162-171. doi:10.1016/j.ijmultiphaseflow.2016.04.003Pandal, A., Payri, R., García-Oliver, J. M., & Pastor, J. M. (2017). Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A). Computers & Fluids, 156, 9-20. doi:10.1016/j.compfluid.2017.06.022Pandal, A., García-Oliver, J. M., Novella, R., & Pastor, J. M. (2018). A computational analysis of local flow for reacting Diesel sprays by means of an Eulerian CFD model. International Journal of Multiphase Flow, 99, 257-272. doi:10.1016/j.ijmultiphaseflow.2017.10.010Payri, R., Ruiz, S., Gimeno, J., & Martí-Aldaraví, P. (2015). Verification of a new CFD compressible segregated and multi-phase solver with different flux updates-equations sequences. Applied Mathematical Modelling, 39(2), 851-861. doi:10.1016/j.apm.2014.07.011Salvador, F. J., Gimeno, J., Pastor, J. M., & Martí-Aldaraví, P. (2014). Effect of turbulence model and inlet boundary condition on the Diesel spray behavior simulated by an Eulerian Spray Atomization (ESA) model. International Journal of Multiphase Flow, 65, 108-116. doi:10.1016/j.ijmultiphaseflow.2014.06.003Demoulin, F.-X., Beau, P.-A., Blokkeel, G., Mura, A., & Borghi, R. (2007). A NEW MODEL FOR TURBULENT FLOWS WITH LARGE DENSITY FLUCTUATIONS: APPLICATION TO LIQUID ATOMIZATION. Atomization and Sprays, 17(4), 315-345. doi:10.1615/atomizspr.v17.i4.20Pandal, A., Pastor, J. M., Payri, R., Kastengren, A., Duke, D., Matusik, K., … Schmidt, D. (2017). Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuels and Lubricants, 10(2), 423-431. doi:10.4271/2017-01-0859Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Faeth, G. M. (1983). Evaporation and combustion of sprays. Progress in Energy and Combustion Science, 9(1-2), 1-76. doi:10.1016/0360-1285(83)90005-9Pitzer, K. S., Lippmann, D. Z., Curl, R. F., Huggins, C. M., & Petersen, D. E. (1955). The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization1. Journal of the American Chemical Society, 77(13), 3433-3440. doi:10.1021/ja01618a002Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005Duret, B., Reveillon, J., Menard, T., & Demoulin, F. X. (2013). Improving primary atomization modeling through DNS of two-phase flows. International Journal of Multiphase Flow, 55, 130-137. doi:10.1016/j.ijmultiphaseflow.2013.05.004Gimeno, J., Bracho, G., Martí-Aldaraví, P., & Peraza, J. E. (2016). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 126, 1146-1156. doi:10.1016/j.enconman.2016.07.077Kastengren, A., Ilavsky, J., Viera, J. P., Payri, R., Duke, D. J., Swantek, A., … Powell, C. F. (2017). Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. International Journal of Multiphase Flow, 92, 131-139. doi:10.1016/j.ijmultiphaseflow.2017.03.005Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309Matusik, K. E., Duke, D. J., Kastengren, A. L., Sovis, N., Swantek, A. B., & Powell, C. F. (2017). High-resolution X-ray tomography of Engine Combustion Network diesel injectors. International Journal of Engine Research, 19(9), 963-976. doi:10.1177/1468087417736985Payri, R., Gimeno, J., Cuisano, J., & Arco, J. (2016). Hydraulic characterization of diesel engine single-hole injectors. Fuel, 180, 357-366. doi:10.1016/j.fuel.2016.03.083Naber, J., & Siebers, D. L. (1996). Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays. SAE Technical Paper Series. doi:10.4271/960034Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521Battistoni, M., Magnotti, G. M., Genzale, C. L., Arienti, M., Matusik, K. E., Duke, D. J., … Marti-Aldaravi, P. (2018). Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE International Journal of Fuels and Lubricants, 11(4), 337-352. doi:10.4271/2018-01-0277Chesnel, J., Reveillon, J., Menard, T., & Demoulin, F.-X. (2011). LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION. Atomization and Sprays, 21(9), 711-736. doi:10.1615/atomizspr.2012003740Devassy, B. M., Habchi, C., & Daniel, E. (2015). ATOMIZATION MODELLING OF LIQUID JETS USING A TWO-SURFACE-DENSITY APPROACH. Atomization and Sprays, 25(1), 47-80. doi:10.1615/atomizspr.2014011350García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023Han, D., & Mungal, M. . (2001). Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combustion and Flame, 124(3), 370-386. doi:10.1016/s0010-2180(00)00211-xHill, B. J. (1972). Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. Journal of Fluid Mechanics, 51(4), 773-779. doi:10.1017/s0022112072001351Post, S., Iyer, V., & Abraham, J. (1999). A Study of Near-Field Entrainment in Gas Jets and Sprays Under Diesel Conditions. Journal of Fluids Engineering, 122(2), 385-395. doi:10.1115/1.48326

    Experimental Investigation of Injection-Coupled High-Frequency Combustion Instabilities

    Get PDF
    Self-excited high-frequency combustion instabilities were investigated in a 42-injector cryogenic rocket combustor under representative conditions. In previous research it was found that the instabilities are connected to acoustic resonance of the shear-coaxial injectors. In order to gain a better understanding of the flame dynamics during instabilities, an optical access window was realised in the research combustor. This allowed 2D visualisation of supercritical flame response to acoustics under conditions similar to those found in European launcher engines. Through the window, high-speed imaging of the flame was conducted. Dynamic Mode Decomposition was applied to analyse the flame dynamics at specific frequencies, and was able to isolate the flame response to injector or combustion chamber acoustic modes. The flame response at the eigenfrequencies of the oxygen injectors showed symmetric and longitudinal wave-like structures on the dense oxygen core. With the gained understanding of the BKD coupling mechanism it was possible to derive LOX injector geometry changes in order to reduce the risks of injection-coupled instabilities for future cryogenic rocket engines

    Experimental Investigation of Injection-Coupled High-Frequency Combustion Instabilities

    Get PDF
    Self-excited high-frequency combustion instabilities were investigated in a 42-injector cryogenic rocket combustor under representative conditions. In previous research it was found that the instabilities are connected to acoustic resonance of the shear-coaxial injectors. In order to gain a better understanding of the flame dynamics during instabilities, an optical access window was realised in the research combustor. This allowed 2D visualisation of supercritical flame response to acoustics under conditions similar to those found in European launcher engines. Through the window, high-speed imaging of the flame was conducted. Dynamic Mode Decomposition was applied to analyse the flame dynamics at specific frequencies, and was able to isolate the flame response to injector or combustion chamber acoustic modes. The flame response at the eigenfrequencies of the oxygen injectors showed symmetric and longitudinal wave-like structures on the dense oxygen core. With the gained understanding of the BKD coupling mechanism it was possible to derive LOX injector geometry changes in order to reduce the risks of injection-coupled instabilities for future cryogenic rocket engines
    corecore